29 research outputs found

    Quantitative three-dimensional echocardiographic analysis of the bicuspid aortic valve and aortic root:A single modality approach

    Get PDF
    Background Patients with bicuspid aortic valves (BAV) are heterogeneous with regard to patterns of root remodeling and valvular dysfunction. Two-dimensional echocardiography is the standard surveillance modality for patients with aortic valve dysfunction. However, ancillary computed tomography or magnetic resonance imaging is often necessary to characterize associated patterns of aortic root pathology. Conversely, the pairing of three-dimensional (3D) echocardiography with novel quantitative modeling techniques allows for a single modality description of the entire root complex. We sought to determine 3D aortic valve and root geometry with this quantitative approach. Methods Transesophageal real-time 3D echocardiography was performed in five patients with tricuspid aortic valves (TAV) and in five patients with BAV. No patient had evidence of valvular dysfunction or aortic root pathology. A customized image analysis protocol was used to assess 3D aortic annular, valvular, and root geometry. Results Annular, sinus and sinotubular junction diameters and areas were similar in both groups. Coaptation length and area were higher in the TAV group (7.25 +/- 0.98 mm and 298 +/- 118 mm(2), respectively) compared to the BAV group (5.67 +/- 1.33 mm and 177 +/- 43 mm(2); P = .07 and P = .01). Cusp surface area to annular area, coaptation height, and the sub- and supravalvular tenting indices did not differ significantly between groups. Conclusions Single modality 3D echocardiography-based modeling allows for a quantitative description of the aortic valve and root geometry. This technique together with novel indices will improve our understanding of normal and pathologic geometry in the BAV population and may help to identify geometric predictors of adverse remodeling and guide tailored surgical therapy

    Reoperative Aortic Root and Cabrol Procedure with Aortic Arch and Descending Thoracic Aorta Replacement

    No full text
    A sixty-three-year-old man with a complex history, including a prior mechanical Cabrol procedure and subsequent total aortic arch replacement with frozen elephant trunk, presented to an outside hospital with a fever. CT imaging revealed a graft infection. The patient was transferred for further management, and after a multidisciplinary discussion, the decision was made to pursue graft explanation and reconstruction.  First, the right axillary artery was exposed for arterial cannulation. A bilateral anterior thoracotomy was then performed. Extensive mediastinal adhesiolysis was required as expected. After heparinization, cardiopulmonary bypass was commenced through the right axillary artery and dual-stage right atrial cannulas. A retrograde cardioplegia cannula was placed, the aortic graft was cross-clamped, and retrograde cardioplegia was administered. Dissection continued distally on the ascending aorta to free the infected graft where purulent material was encountered.  Next, attention was turned to the ascending aorta and aortic root. The mechanical-valved prosthetic conduit including the Cabrol graft was removed, and circulatory arrest with bilateral cerebral perfusion was initiated. The arch portion of the prosthetic graft was resected, and the left carotid artery was reconstructed using a branched graft followed by initiation of antegrade cerebral perfusion. After dissecting the innominate artery, cerebral perfusion was stopped and the innominate artery was reconstructed using the branched graft. Antegrade cerebral perfusion was then resumed.  Attention was then turned to the descending aorta. The descending aorta was transected distal to the stent graft, and the stent graft was removed. The aorta was opened longitudinally, the false lumen thrombus was removed, and the distal aorta was fenestrated. A 32 mm sidearm graft was anastomosed to the distal descending thoracic aorta and lower body reperfusion was initiated. Bleeding intercostal vessels were then oversewn. The proximal reconstruction included a bioprosthetic-valved 32 mm prosthetic conduit with a 6 mm prosthetic graft for the Cabrol reconstruction of the coronary arteries. The left and right coronary arteries were anastomosed to opposite ends of the 6mm graft, and a side-to-side anastomosis was performed between the Cabrol and aortic grafts. The valved conduit and ascending aortic grafts were anastomosed, and the branched graft was anastomosed to the ascending aortic graft, which completed the reconstruction. Reference 1. Bianco V, Kilic A, Gleason TG, Arnaoutakis GJ, Sultan I. Management of thoracic aortic graft infections. J Card Surg. 2018;33(10):658-665. doi:10.1111/jocs.13792</p

    A novel approach to in vivo mitral valve stress analysis.

    No full text
    Three-dimensional (3-D) echocardiography allows the generation of anatomically correct and time-resolved geometric mitral valve (MV) models. However, as imaged in vivo, the MV assumes its systolic geometric configuration only when loaded. Customarily, finite element analysis (FEA) is used to predict material stress and strain fields rendered by applying a load on an initially unloaded model. Therefore, this study endeavors to provide a framework for the application of in vivo MV geometry and FEA to MV physiology, pathophysiology, and surgical repair. We hypothesize that in vivo MV geometry can be reasonably used as a surrogate for the unloaded valve in computational (FEA) simulations, yielding reasonable and meaningful stress and strain magnitudes and distributions. Three experiments were undertaken to demonstrate that the MV leaflets are relatively nondeformed during systolic loading: 1) leaflet strain in vivo was measured using sonomicrometry in an ovine model, 2) hybrid models of normal human MVs as constructed using transesophageal real-time 3-D echocardiography (rt-3DE) were repeatedly loaded using FEA, and 3) serial rt-3DE images of normal human MVs were used to construct models at end diastole and end isovolumic contraction to detect any deformation during isovolumic contraction. The average linear strain associated with isovolumic contraction was 0.02 ± 0.01, measured in vivo with sonomicrometry. Repeated loading of the hybrid normal human MV demonstrated little change in stress or geometry: peak von Mises stress changed b

    Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound.

    No full text
    PURPOSE: Precise 3D modeling of the mitral valve has the potential to improve our understanding of valve morphology, particularly in the setting of mitral regurgitation (MR). Toward this goal, the authors have developed a user-initialized algorithm for reconstructing valve geometry from transesophageal 3D ultrasound (3D US) image data. METHODS: Semi-automated image analysis was performed on transesophageal 3D US images obtained from 14 subjects with MR ranging from trace to severe. Image analysis of the mitral valve at midsystole had two stages: user-initialized segmentation and 3D deformable modeling with continuous medial representation (cm-rep). Semi-automated segmentation began with user-identification of valve location in 2D projection images generated from 3D US data. The mitral leaflets were then automatically segmented in 3D using the level set method. Second, a bileaflet deformable medial model was fitted to the binary valve segmentation by Bayesian optimization. The resulting cm-rep provided a visual reconstruction of the mitral valve, from which localized measurements of valve morphology were automatically derived. The features extracted from the fitted cm-rep included annular area, annular circumference, annular height, intercommissural width, septolateral length, total tenting volume, and percent anterior tenting volume. These measurements were compared to those obtained by expert manual tracing. Regurgitant orifice area (ROA) measurements were compared to qualitative assessments of MR severity. The accuracy of valve shape representation with cm-rep was evaluated in terms of the Dice overlap between the fitted cm-rep and its target segmentation. RESULTS: The morphological features and anatomic ROA derived from semi-automated image analysis were consistent with manual tracing of 3D US image data and with qualitative assessments of MR severity made on clinical radiology. The fitted cm-reps accurately captured valve shape and demonstrated patient-specific differences in valve morphology among subjects with varying degrees of MR severity. Minimal variation in the Dice overlap and morphological measurements was observed when different cm-rep templates were used to initialize model fitting. CONCLUSIONS: This study demonstrates the use of deformable medial modeling for semi-automated 3D reconstruction of mitral valve geometry using transesophageal 3D US. The proposed algorithm provides a parametric geometrical representation of the mitral leaflets, which can be used to evaluate valve morphology in clinical ultrasound images

    The influence of saddle-shaped annuloplasty on leaflet curvature in patients with ischaemic mitral regurgitation.

    No full text
    OBJECTIVES: Reports indicate that repair procedures for ischaemic mitral regurgitation (IMR) are less durable than previously thought. Repair failure has been shown to be stress related. Leaflet curvature is the major determinant of valve stress. Theoretical and animal experiments have shown that saddle-shaped annuloplasty optimizes leaflet curvature when compared with standard flat ring annuloplasty. Despite this, the influence of the ring shape on leaflet curvature has not been described in patients with IMR. This study uses real-time three-dimensional echocardiography (rt-3DE) to assess the influence of the ring shape on leaflet curvature. METHODS: Rt-3DE was performed in 21 patients with IMR after placement of either a flat (n = 10, CE-Physio, Edwards) or saddle-shaped (n = 11, Profile 3D, Medtronic) annuloplasty ring. A combination of commercially available and customized software was used to measure multiple leaflet curvature parameters across all regions of the mitral valve. RESULTS: Independently of the shape of the annuloplasty ring, all patients were subject to the same degree of annular undersizing. Patients who received saddle-shaped annuloplasty rings had greater leaflet curvature in all six mitral valve leaflet regions (A1 = 0.36 ± 0.10, A2 = 0.53 ± 0.13, A3 = 0.47 ± 0.13, P1 = 0.35 ± 0.23, P2 = 0.53 ± 0.34, P3 = 0.42 ± 0.20 cm(-2)) compared with patients who received flat annuloplasty rings (A1 = 0.16 ± 0.11, A2 = 0.18 ± 0.09, A3 = 0.16 ± 0.11, P1 = 0.20 ± 0.17, P2 = 0.21 ± 0.11, P3 = 0.18 ± 0.13 cm(-2)). These differences were statistically significant in all regions except the P1 region. CONCLUSIONS: Saddle-shaped annuloplasty rings increase leaflet curvature compared with flat rings in patients with IMR. As a result, saddle-shaped annuloplasty may decrease leaflet stress and potentially increases the durability of the repair in patients with IMR

    Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection.

    No full text
    BACKGROUND: Proponents of flexible annuloplasty rings have hypothesized that such devices maintain annular dynamics. This hypothesis is based on the supposition that annular motion is relatively normal in patients undergoing mitral valve repair. We hypothesized that mitral annular dynamics are impaired in ischemic mitral regurgitation and myxomatous mitral regurgitation. METHODS AND RESULTS: A Philips iE33 echocardiographic module and X7-2t probe were used to acquire full-volume real-time 3-dimensional transesophageal echocardiography loops in 11 normal subjects, 11 patients with ischemic mitral regurgitation and 11 patients with myxomatous mitral regurgitation. Image analysis was performed using Tomtec Image Arena, 4D-MV Assessment, 2.1 (Munich, Germany). A midsystolic frame was selected for the initiation of annular tracking using the semiautomated program. Continuous parameters were normalized in time to provide for uniform systolic and diastolic periods. Both ischemic mitral regurgitation (9.98 ± 155 cm(2)) and myxomatous mitral regurgitation annuli (13.29 ± 3.05 cm(2)) were larger in area than normal annuli (7.95 ± 1.40 cm(2)) at midsystole. In general, ischemic mitral regurgitation annuli were less dynamic than controls. In myxomatous mitral regurgitation, annular dynamics were also markedly abnormal with the mitral annulus dilating rapidly in early systole in response to rising ventricular pressure. CONCLUSIONS: In both ischemic mitral regurgitation and myxomatous mitral regurgitation, annular dynamics and anatomy are abnormal. Flexible annuloplasty devices used in mitral valve repair are, therefore, unlikely to result in either normal annular dynamics or normal anatomy

    Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.

    No full text
    In vivo human mitral valves (MV) were imaged using real-time 3D transesophageal echocardiography (rt-3DTEE), and volumetric images of the MV at mid-systole were analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation, a compact representation of shape. The resulting MV models were loaded with physiologic pressures using finite element analysis (FEA). We present the regional leaflet stress distributions predicted in normal and diseased (regurgitant) MVs. Rt-3DTEE, semi-automated leaflet segmentation, 3D deformable modeling, and FEA modeling of the in vivo human MV is tenable and useful for evaluation of MV pathology

    Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection.

    No full text
    BACKGROUND: Proponents of flexible annuloplasty rings have hypothesized that such devices maintain annular dynamics. This hypothesis is based on the supposition that annular motion is relatively normal in patients undergoing mitral valve repair. We hypothesized that mitral annular dynamics are impaired in ischemic mitral regurgitation and myxomatous mitral regurgitation. METHODS AND RESULTS: A Philips iE33 echocardiographic module and X7-2t probe were used to acquire full-volume real-time 3-dimensional transesophageal echocardiography loops in 11 normal subjects, 11 patients with ischemic mitral regurgitation and 11 patients with myxomatous mitral regurgitation. Image analysis was performed using Tomtec Image Arena, 4D-MV Assessment, 2.1 (Munich, Germany). A midsystolic frame was selected for the initiation of annular tracking using the semiautomated program. Continuous parameters were normalized in time to provide for uniform systolic and diastolic periods. Both ischemic mitral regurgitation (9.98 ± 155 cm(2)) and myxomatous mitral regurgitation annuli (13.29 ± 3.05 cm(2)) were larger in area than normal annuli (7.95 ± 1.40 cm(2)) at midsystole. In general, ischemic mitral regurgitation annuli were less dynamic than controls. In myxomatous mitral regurgitation, annular dynamics were also markedly abnormal with the mitral annulus dilating rapidly in early systole in response to rising ventricular pressure. CONCLUSIONS: In both ischemic mitral regurgitation and myxomatous mitral regurgitation, annular dynamics and anatomy are abnormal. Flexible annuloplasty devices used in mitral valve repair are, therefore, unlikely to result in either normal annular dynamics or normal anatomy

    Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation.

    No full text
    BACKGROUND: Using human mitral valve (MV) models derived from three-dimensional echocardiography, finite element analysis was used to predict mechanical leaflet and chordal stress. Subsequently, valve geometries were altered to examine the effects on stresses of the following: (1) varying coaptation area; (2) varying noncoapted leaflet tissue area; and (3) varying interleaflet coefficient of friction (μ). METHODS: Three human MV models were loaded with a transvalvular pressure of 80 mm Hg using finite element analysis. Initially leaflet coaptation was set to 10%, 50%, or 100% of actual coaptation length to test the influence of coaptation length on stress distribution. Next, leaflet surface areas were augmented by 1% overall and by 2% in the noncoapted belly region to test the influence of increased leaflet billowing without changing the gross geometry of the MV. Finally, the coefficient of friction between the coapted leaflets was set to μ = 0, 0.05, or 0.3, to assess the influence of friction on MV function. RESULTS: Leaflet coaptation length did not affect stress distribution in either the coapted or noncoapted leaflet regions; peak leaflet stress was 0.36 ± 0.17 MPa at 100%, 0.35 ± 0.14 MPa at 50%, and 0.35 ± 0.15 MPa at 10% coaptation lengths (p = 0.85). Similarly, coaptation length did not affect peak chordal tension (p = 0.74). Increasing the noncoapted leaflet area decreased the peak valvular stresses by 5 ± 2% (p = 0.02). Varying the coefficient of friction between leaflets did not alter leaflet or chordal stress distribution (p = 0.18). CONCLUSIONS: Redundant MV leaflet tissue reduces mechanical stress on the noncoapted leaflets; the extent of coaptation or frictional interleaflet interaction does not independently influence leaflet stresses. Repair techniques that increase or preserve noncoapted leaflet area may decrease mechanical stresses and thereby enhance repair durability
    corecore